Skip to content

Architecture Overview

This document provides a high-level overview of the Gemini Agent Framework's architecture and design principles.

Core Components

1. Agent Class

The central component of the framework, responsible for: - Managing tool registration and execution - Handling API communication with Gemini - Managing agent state and variables - Processing prompts and responses

class Agent:
    def __init__(self, api_key: str, tools: List[Callable] = None, model_name: str = "gemini-1.5-flash"):
        # Initialize agent with API key and tools
        pass

    def prompt(self, user_prompt: str, ...) -> Any:
        # Process user prompt and return response
        pass

2. Tool System

The tool system allows users to define custom functions that the agent can use:

@Agent.description("Tool description")
@Agent.parameters({
    'param': {'type': type, 'description': 'Parameter description'}
})
def tool_function(param: type) -> return_type:
    # Tool implementation
    pass

Tool Registration

Tools are registered using decorators that: 1. Store tool metadata 2. Validate tool parameters 3. Map Python types to Gemini types 4. Handle tool execution

3. Variable Management

The framework includes a robust variable management system:

def set_variable(self, name: str, value: Any, description: str = "", type_hint: type = None) -> str:
    # Store variable with metadata
    pass

def get_variable(self, name: str) -> Any:
    # Retrieve stored variable
    pass

Variable Storage

Variables are stored with: - Value - Description - Type information - Creation timestamp - Metadata

Data Flow

1. Prompt Processing

graph LR
    A[User Prompt] --> B[Agent]
    B --> C[Tool Selection]
    C --> D[Tool Execution]
    D --> E[Response Generation]
    E --> F[User Response]

2. Tool Execution

graph LR
    A[Tool Call] --> B[Parameter Validation]
    B --> C[Type Conversion]
    C --> D[Function Execution]
    D --> E[Result Processing]
    E --> F[Response]

Type System

1. Python to Gemini Type Mapping

Python Type Gemini Type Description
str STRING Text data
int INTEGER Whole numbers
float NUMBER Decimal numbers
bool BOOLEAN True/False values
list ARRAY Ordered collections
dict OBJECT Key-value pairs

2. Type Validation

The framework includes: - Runtime type checking - Automatic type conversion - Error handling for type mismatches

Error Handling

1. Error Types

The framework handles: - API errors - Tool execution errors - Type conversion errors - Variable management errors

2. Error Recovery

Features include: - Graceful error handling - Error reporting - Recovery mechanisms - User feedback

Security

1. API Key Management

  • Secure storage
  • Environment variable support
  • No hardcoding

2. Input Validation

  • Parameter validation
  • Type checking
  • Sanitization

Performance

1. Caching

  • Tool result caching
  • Variable caching
  • Response caching

2. Optimization

  • Batch processing
  • Parallel execution
  • Resource management

Extensibility

1. Custom Tools

Users can create custom tools by: 1. Defining functions 2. Adding decorators 3. Specifying parameters 4. Implementing logic

2. Custom Types

Support for: - Custom type definitions - Type conversion - Validation rules

Future Considerations

1. Planned Features

  • Async support
  • Streaming responses
  • Custom model support
  • Enhanced caching

2. Architecture Improvements

  • Modular design
  • Plugin system
  • Enhanced error handling
  • Better type system

Contributing

1. Code Structure

gemini_agent_framework/
├── src/
│   └── gemini_agent/
│       ├── __init__.py
│       └── agent.py
├── tests/
├── docs/
└── examples/

2. Development Guidelines

  • Follow PEP 8
  • Write tests
  • Update documentation
  • Use type hints