Architecture Overview¶
This document provides a high-level overview of the Gemini Agent Framework's architecture and design principles.
Core Components¶
1. Agent Class¶
The central component of the framework, responsible for: - Managing tool registration and execution - Handling API communication with Gemini - Managing agent state and variables - Processing prompts and responses
class Agent:
def __init__(self, api_key: str, tools: List[Callable] = None, model_name: str = "gemini-1.5-flash"):
# Initialize agent with API key and tools
pass
def prompt(self, user_prompt: str, ...) -> Any:
# Process user prompt and return response
pass
2. Tool System¶
The tool system allows users to define custom functions that the agent can use:
@Agent.description("Tool description")
@Agent.parameters({
'param': {'type': type, 'description': 'Parameter description'}
})
def tool_function(param: type) -> return_type:
# Tool implementation
pass
Tool Registration¶
Tools are registered using decorators that: 1. Store tool metadata 2. Validate tool parameters 3. Map Python types to Gemini types 4. Handle tool execution
3. Variable Management¶
The framework includes a robust variable management system:
def set_variable(self, name: str, value: Any, description: str = "", type_hint: type = None) -> str:
# Store variable with metadata
pass
def get_variable(self, name: str) -> Any:
# Retrieve stored variable
pass
Variable Storage¶
Variables are stored with: - Value - Description - Type information - Creation timestamp - Metadata
Data Flow¶
1. Prompt Processing¶
graph LR
A[User Prompt] --> B[Agent]
B --> C[Tool Selection]
C --> D[Tool Execution]
D --> E[Response Generation]
E --> F[User Response]
2. Tool Execution¶
graph LR
A[Tool Call] --> B[Parameter Validation]
B --> C[Type Conversion]
C --> D[Function Execution]
D --> E[Result Processing]
E --> F[Response]
Type System¶
1. Python to Gemini Type Mapping¶
Python Type | Gemini Type | Description |
---|---|---|
str | STRING | Text data |
int | INTEGER | Whole numbers |
float | NUMBER | Decimal numbers |
bool | BOOLEAN | True/False values |
list | ARRAY | Ordered collections |
dict | OBJECT | Key-value pairs |
2. Type Validation¶
The framework includes: - Runtime type checking - Automatic type conversion - Error handling for type mismatches
Error Handling¶
1. Error Types¶
The framework handles: - API errors - Tool execution errors - Type conversion errors - Variable management errors
2. Error Recovery¶
Features include: - Graceful error handling - Error reporting - Recovery mechanisms - User feedback
Security¶
1. API Key Management¶
- Secure storage
- Environment variable support
- No hardcoding
2. Input Validation¶
- Parameter validation
- Type checking
- Sanitization
Performance¶
1. Caching¶
- Tool result caching
- Variable caching
- Response caching
2. Optimization¶
- Batch processing
- Parallel execution
- Resource management
Extensibility¶
1. Custom Tools¶
Users can create custom tools by: 1. Defining functions 2. Adding decorators 3. Specifying parameters 4. Implementing logic
2. Custom Types¶
Support for: - Custom type definitions - Type conversion - Validation rules
Future Considerations¶
1. Planned Features¶
- Async support
- Streaming responses
- Custom model support
- Enhanced caching
2. Architecture Improvements¶
- Modular design
- Plugin system
- Enhanced error handling
- Better type system
Contributing¶
1. Code Structure¶
gemini_agent_framework/
├── src/
│ └── gemini_agent/
│ ├── __init__.py
│ └── agent.py
├── tests/
├── docs/
└── examples/
2. Development Guidelines¶
- Follow PEP 8
- Write tests
- Update documentation
- Use type hints